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1 The Josephson Junction in a Magnetic Field

At this point we have the dc Josephson e�ect, which is a spontaneous Cooper
pair curent that �ows between two superconductors separated by a weak link
as Js = Jc sin(θ1 − θ2), where Js is the super-current density, Jc is the critical
current density (dependent on the barrier height and thickness), and θ1 − θ2 is
the di�erence in phases of the macroscopic quantum wave functions in the two
superconductors.
Now we wish to include the e�ect of a magnetic �eld on the Josephson junction.
We shall assume that the superconducting banks remain in the Meissner state
and look at the e�ects of the �eld on the junction properties. To do this,
we appeal to the gauge invariance of the observables, namely |Ψ(r, t)|2 and

Js = q∗n∗

m∗ (~
−→
5θ − q∗

−→
A ), and demand that their values not depend on a choice

of gauge for
−→
A and

−→
B . A new gauge can be created as

−→
A ′ =

−→
A +
−→
5χ(r), where

χ(r) is an arbitrary scalar function of position. This will leave Js and |Ψ(r, t)|2
invariant if we also modify the phase of the macroscopic quantum wavefunction
as θ′ = θ + q∗

~ χ(r). Using q∗ = −2e, we have a new phase di�erence on the
junction γ = θ′1−θ′2− 2π

Φ0
(χ1−χ2). Writing the di�erence in χ as the line integral

of
−→
5χ(r), we get this expression for the gauge-invariant phase di�erence γ as,

γ = θ1 − θ2 − 2π
Φ0

∫ 2

1

−→
A ·
−→
dl . One can show that the change in gauge introduced

above leaves this quantity unchanged.

Now we have the result that Js = Jc sin(γ), with γ = θ1 − θ2 − 2π
Φ0

∫ 2

1

−→
A ·
−→
dl

as a more complete expression for the dc Josephson e�ect. We can see that
an applied magnetic �eld has the ability to modify the supercurrent �owing
through the junction.

2 The ac Josephson E�ect

We wish to understand the dynamics of a Josephson junction. If a supercurrent
does not cause the phase di�erence γ to "wind", then what does?
Take the time derivative of the gauge invariant phase di�erence,
∂γ
∂t = ∂θ1

∂t −
∂θ2
∂t −

2π
Φ0

∂
∂t

∫ 2

1

−→
A ·
−→
dl
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Back in HW2 you derived an expression for the dynamics of the phase of the
macroscopic quantum wavefunction Ψ(r, t) =

√
n∗eiθ(r,t), where n∗ is assumed

independent of space and time, as,
−~∂θ∂t = 1

2n∗ ΛJ2
s + q∗φ, where φ is the electrostatic potential.

Using this in the expression for ∂γ
∂t , assuming that the current is continuous

across the junction, and that the di�erence in scalar potential can be written as
the line integral of the gradient, we arrive at,
∂γ
∂t = 2π

Φ0

∫ 2

1

(
−
−→
5φ− ∂

−→
A
∂t

)
·
−→
dl .

The quantity in parentheses is the total electric �eld, that due to both scalar
and vector sources. Hence we have
∂γ
∂t = 2π

Φ0

∫ 2

1

−→
E ·
−→
dl .

This integral is just the potential di�erence between the superconductors, yield-
ing the famous ac Josephson e�ect expression:
∂γ
∂t = 2π

Φ0
∆V . Hence, by applying a dc potential di�erence across the junction

you can get the gauge-invariant phase di�erence to "wind".

3 Circuit Model of a Josephson Junction

One can look at a Josephson junction as a circuit element. By integrating the
current density over the entire junction one can relate the total current through
the device to the gauge-invariant phase di�erence (GIPD) across the device:
I = Ic sin(γ). In the case of a voltage drop V across the junction, the GIPD
will wind as V = Φ0

2π
dγ
dt .

Suppose a static dc voltage Vdc is applied to the junction. The GIPD can
be found from integration: γ(t) = γ(0) + 2π

Φ0
Vdct. This leads to an alternating

current through the junction, given by I = Ic sin(2πfJ t+ γ(0)). The Josephson
frequency is fJ = Vdc

h/2e = 483.6 (THz/V) Vdc = 483.6 (MHz/µV) Vdc. The JJ

acts as a very precise voltage-to-frequency transducer and vice versa.
The NIST (and world) voltage standard is based on generating a precise mm-
wave signal (at about 90 GHz) and shining it on a series array of Josephson
junctions that are designed to yield a total dc voltage drop of precisely 1 volt.
Going the other way, one can use intrinsic Josephson junctions that occur in
layered high-Tc cuprates (like Bi-Sr-Ca-Cu-O), biased by a dc voltage, to create
a coherent mm-wave and THz source. The output frequency can be tuned by
about 10 to 20% by altering the dc voltage. In principle the output power should
scale with the number of junction layers squared, and it does. However as the
stacks of JJs grow thicker they fail to operate properly due to internal heating
and other source of nonlinearity.
These applications are illustrated on the class web site.
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4 Josephson Junction Critical Current Modula-

tion with a Magnetic Field

Consider an SIS Josephson junction with barrier thickness 2a and superconduct-
ing electrodes with thickness much larger than the e�ective penetration depth.
The middle of the barrier lies in the yz plane. Apply a dc magnetic �eld through

the barrier parallel to the electrodes
−→
B = Bŷ.

By drawing a contour of width dz in the z-direction and height much greater
than the e�ective penetration depths in the two electrodes, one can follow the
evolution of the phase of the macroscopic quantum wavefunction on the contour
and deduce a di�erential equation for the evolution of the gauge-invariant phase
di�erence along the junction in the z-direction:
∂γ
∂z =

2πdeff

Φ0
B

Here deff = 2a + λ1 + λ2 is the "magnetic thickness" of the barrier. This
was derived under the assumption that the junction is "short" (width L < λJ ,
where λJ is derived below), and makes no signi�cant alteration to the applied
magnetic �eld through screening.
Integrating this result along the width of the junction yields,
γ(z) = γ(0) + 2π

deffLB
Φ0

z
L . This expression contains the total �ux through the

junction ΦJ = BdeffL divided by the �ux quantum,
γ(z) = γ(0) + 2πΦJ

Φ0

z
L .

Integrating the current density over the area of the junction yields the total
current through the junction,

I = Ic sin(γ(0)) sin(πΦJ/Φ0)
πΦJ/Φ0

, where Ic ≡ JcWL. This is the famous magnetic

di�raction curve for modulation of the critical current of a JJ with external
in-plane magnetic �eld.
At ΦJ = 0 the current J = Jc sin(γ(z)) is uniform over the junction and it
has a maximum critical current. At ΦJ/Φ0 = 1 there is a linear increase of γ
from γ(0) to γ(0) + 2π from one edge of the junction to the other, creating a
single-period sinusoidal oscillation of current through the junction. This results
in zero net current through the junction.
The resemblance of the critical current di�raction pattern to single-slit di�rac-
tion in wave optics shows the analogy to interference created by spatial variation
of a phase, γ(z) in this case.

The "long junction" case considers the e�ect of self-generated modi�cations
of the applied magnetic �eld due to screening. Starting with the di�erential
equation derived above, ∂γ∂z =

2πdeff

Φ0
B, now assume that B = Bext +Bself and

that the total magnetic �eld must satisfy Ampere's law:
−→
5×
−→
B = µ0

−→
J +εµ0

∂
−→
E
∂t .

Assuming a static situation and that the edges of the junction are far away so

that
−→
B = By(z)ŷ only, then Ampere's law becomes

∂By(z)
∂z = −µ0Jx(z). Com-

bining this with the di�erential equation for γ(z) yields the 1D sine-Gordon
equation,
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d2γ
dz2 = 1

λ2
J

sin(γ(z)),

where 1
λ2
J

=
2πµ0deffJc

Φ0
, which de�nes the Josephson penetration depth λJ =√

Φ0

2πµ0deffJc
. Note that the Josephson penetration depth is typically much

larger than the London penetration depth at the same T/Tc. This makes Joseph-
son vortices very elongated in the junction direction, as shown on the class web
site.
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